Comparing initial sampling methods on integer space#

Holger Nahrstaedt 2020 Sigurd Carlsen October 2019

When doing baysian optimization we often want to reserve some of the early part of the optimization to pure exploration. By default the optimizer suggests purely random samples for the first n_initial_points (10 by default). The downside to this is that there is no guarantee that these samples are spread out evenly across all the dimensions.

Sampling methods as Latin hypercube, Sobol’, Halton and Hammersly take advantage of the fact that we know beforehand how many random points we want to sample. Then these points can be “spread out” in such a way that each dimension is explored.

See also the example on a real space sphx_glr_auto_examples_initial_sampling_method.py

print(__doc__)
import numpy as np

np.random.seed(1234)
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist

from skopt.sampler import Grid, Halton, Hammersly, Lhs, Sobol
from skopt.space import Space
def plot_searchspace(x, title):
    fig, ax = plt.subplots()
    plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bo', label='samples')
    plt.plot(np.array(x)[:, 0], np.array(x)[:, 1], 'bs', markersize=40, alpha=0.5)
    # ax.legend(loc="best", numpoints=1)
    ax.set_xlabel("X1")
    ax.set_xlim([0, 5])
    ax.set_ylabel("X2")
    ax.set_ylim([0, 5])
    plt.title(title)
    ax.grid(True)


n_samples = 10
space = Space([(0, 5), (0, 5)])

Random sampling#

x = space.rvs(n_samples)
plot_searchspace(x, "Random samples")
pdist_data = []
x_label = []
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("random")
Random samples
empty fields: 27

Sobol’#

sobol = Sobol()
x = sobol.generate(space.dimensions, n_samples)
plot_searchspace(x, "Sobol'")
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("sobol'")
Sobol'
D:\git\scikit-optimize\skopt\sampler\sobol.py:521: UserWarning: The balance properties of Sobol' points require n to be a power of 2. 0 points have been previously generated, then: n=0+10=10.
  warnings.warn(
empty fields: 26

Classic latin hypercube sampling#

lhs = Lhs(lhs_type="classic", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'classic LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("lhs")
classic LHS
empty fields: 26

Centered latin hypercube sampling#

lhs = Lhs(lhs_type="centered", criterion=None)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'centered LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("center")
centered LHS
empty fields: 26

Maximin optimized hypercube sampling#

lhs = Lhs(criterion="maximin", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'maximin LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("maximin")
maximin LHS
empty fields: 26

Correlation optimized hypercube sampling#

lhs = Lhs(criterion="correlation", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'correlation LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("corr")
correlation LHS
empty fields: 26

Ratio optimized hypercube sampling#

lhs = Lhs(criterion="ratio", iterations=10000)
x = lhs.generate(space.dimensions, n_samples)
plot_searchspace(x, 'ratio LHS')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("ratio")
ratio LHS
empty fields: 26

Halton sampling#

halton = Halton()
x = halton.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Halton')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("halton")
Halton
empty fields: 26

Hammersly sampling#

hammersly = Hammersly()
x = hammersly.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Hammersly')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("hammersly")
Hammersly
empty fields: 26

Grid sampling#

grid = Grid(border="include", use_full_layout=False)
x = grid.generate(space.dimensions, n_samples)
plot_searchspace(x, 'Grid')
print("empty fields: %d" % (36 - np.size(np.unique(x, axis=0), 0)))
pdist_data.append(pdist(x).flatten())
x_label.append("grid")
Grid
empty fields: 26

Pdist boxplot of all methods#

This boxplot shows the distance between all generated points using Euclidian distance. The higher the value, the better the sampling method. It can be seen that random has the worst performance

fig, ax = plt.subplots()
ax.boxplot(pdist_data)
plt.grid(True)
plt.ylabel("pdist")
_ = ax.set_ylim(0, 6)
_ = ax.set_xticklabels(x_label, rotation=45, fontsize=8)
initial sampling method integer

Total running time of the script: (0 minutes 5.355 seconds)

Gallery generated by Sphinx-Gallery